用户登录转化医学是什么?
推荐活动
专家访谈
找到约114条结果 (用时0.1656秒)
喜讯!伯桢生物获近亿元A轮融资,打造全球领先一站式类器官模型平台
近日,伯桢生物科技(苏州)有限公司(简称:伯桢生物)宣布完成近亿元A轮融资。本轮融资由国投招商领投,原股东远毅资本超比例跟投。借助本轮融资,伯桢生物将进一步完善全球领先的类器官CDMO、CRO工艺技术体系,加快商业化生产基地的建设及运营,并开拓海外市场。 伯桢生物多谱系多癌种标准化类器官技术 伯桢生物深耕类器官行业底层技术创新,拥有全球领先的类器官...
【收购】Molecular Devices 收购 Cellesce,加速布局类器官领域
Cellesce 的独特开发工艺能为大规模的药物筛选创建一致的患者来源组织类器官。此次收购巩固了 Molecular Devices 作为 3D 生物学解决方案创新者的地位。专业技术的整合将加速生理相关细胞模型在药物发现中的行业应用。 近期,Molecular Devices 宣布收购 Cellesce Ltd (简称“Cellesce”),该公司专注...
大橡科技完成近亿元Pre-B轮融资,自研类器官芯片产业化行至深处
近日,北京大橡科技有限公司(简称:大橡科技)宣布完成近亿元Pre-B轮融资。本轮融资由专注于创新医疗科技投资的比邻星创投领投,汇聚了乾道基金、陕投成长基金、百赢汇智一众跟投方。 2022年,类器官芯片行业获得飞速发展。FDA批准了全球首个完全基于类器官芯片临床前数据的新药进入临床试验;美国两院相继通过《联邦食品、药品和化妆品法(FFDCA)》的修正法案,取消新药必须...
创芯国际再获亿元融资,继续领跑类器官赛道!
近日,创芯国际宣布完成一亿元人民币的Pre-B轮融资。在疫情肆虐,资本寒冬的背景下,创芯在短短两年时间里融资数亿元,进一步巩固其作为类器官赛道的领跑者地位!本轮融资由达晨财智领投,广州金控基金、广州开发区基金、万联证券、中合安科跟投,趣道资产等原有投资机构继续追加投资。 公司创始人黄敏博士表示,本轮融资体现了投资者对行业与企业发展的坚定信心。创芯将继续加大对核心技术...
即将开播 | 类器官研究与应用转化
2D细胞模型体外扩增有一定局限性,在传代后容易丧失原肿瘤的遗传异质性,发生优势克隆选择,且临床相关性较低。相比于2D 细胞模型,3D 细胞或者类器官能提供更有生物相关性的结果,简化并加速药物评价流程。自2009年小肠类器官首次建立至今,类器官研究已经延伸到多个组织系统,并成为当下生命科学领域最热门的技术之一。我们非常荣幸安捷伦BioTek 的技术和平台能够参与其中,与研究者们...
【Nature】斯坦 福大学将“迷你人脑”植入小鼠,开创类器官研究新时代!
最新一项研究表明,移植到老鼠体内的微型人类大脑结构可以发送信号并对老鼠胡须拾取的环境线索做出反应。这一证明人类干细胞生长的神经元可以与活啮齿动物的神经细胞相互作用,从而可能会产生一种测试人类大脑疾病疗法的方法。该研究发表于期刊《Nature》。 https://www.nature.com/articles/d41586-022-03238-x 重大发现...
会议预告 | 类器官研究与应用转化
2D细胞模型体外扩增有一定局限性,在传代后容易丧失原肿瘤的遗传异质性,发生优势克隆选择,且临床相关性较低。相比于2D 细胞模型,3D 细胞或者类器官能提供更有生物相关性的结果,简化并加速药物评价流程。自2009年小肠类器官首次建立至今,类器官研究已经延伸到多个组织系统,并成为当下生命科学领域最热门的技术之一。我们非常荣幸安捷伦BioTek 的技术和平台能够参与其中,与研究者们一...
小鼠or类器官?“微生理系统”能否取代动物试验
研究显示,利用类肿瘤器官来预测某种药物疗效的准确率约为80%,远远超过动物试验模型8%的平均准确率。随着科学家们更好地了解人体生物学的工作原理,他们逐渐认识到动物试验模型是不可靠的。寻找替代方法的工作已经加速,因为基于人类基因和细胞、甚至为患者量身定制的创新疗法可能在动物身上完全无效。 世界上大多数国家都没有动物试验的可靠数据,但据估计,全球每年使用超过1亿只试验动...
【Stem Cell Rep.】重大突破!类器官生产加速疾病和药物开发研究
在2022年6月28日发表在《干细胞报告》上的一篇论文中,辛辛那提(Cincinnati)儿童医院的一组专家开发了一种克服这种生产瓶颈的方法。这种新方法已经被用于推进医疗中心内的类器官研究。由于所涉及的材料可以被冷冻和解冻,并且仍然可以产生高质量的类器官,这一发现使得将启动材料运送到世界各地的其他实验室成为可能——这可能会在整个医学研究中显著加速人类胃肠道类器官的使用。 ...
【Nature子刊】类器官助力新药研发!MCLA-158抗体能抑制临床前模型中肿瘤的转移和生长
该研究于周一(4月25日)发表于《Nature Cancer》上,题为“Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR × LGR5 bispecific antibody with efficacy in epithelial tumors”。 ...
【Advanced Science】中科院大连化物所秦建华团队发表类器官与器官芯片研究COVID-19进展综述
长期以来,传染病一直是全球医疗卫生行业面临的严峻挑战。目前,全球新冠肺炎确诊病例仍在持续增长,给人类生命健康和社会经济发展带来了严重影响。新冠肺炎临床表现轻重不一,重症患者可累及多个脏器,引发全身性免疫反应和多器官功能衰竭。随着SARS-CoV-2的快速进化,目前已有多种变异株出现。一些变异株呈现出更强的病毒传播和免疫逃逸能力,以及对新冠疫苗较低敏感性等特点,这对人类健康和安全带来了巨大的...
重磅!类器官再入“十四五”重点专项,潜力巨大!R-Spondin 1、Noggin和Wnt3a等受欢迎
图1.《基因治疗产品非临床研究与评价技术指导原则(试行)》 图2.《基因修饰细胞治疗产品非临床研究技术指导原则(试行)》 2021年1月28日,科技部下发的《关于对“十四五”国家重点研发计划6个重点专项2021年度项目申报指南征求意见的通知》中,把“基于类器官的...
【Cell子刊】还在基质胶培养类器官?悬浮培养类器官了解一下
在过去的十年里,研究人体如何发育和运转的科学家们经历了一次复兴,这要归功于一种被称为“类器官”的结构——一种由多能干细胞在皮氏培养皿中培育的微小3D器官模型。 类器官来源于人类多能干细胞,可以诱导成为人体内的任何一种细胞类型,已成为了解人类发育和疾病的重要研究工具。它们使科学家得以摆脱细胞培养中简单的二维生长,并加深了科...
【Nature子刊】重磅!3D类器官修复受损肠道,临床应用前景广阔
3D类器官,是过去十年中生物医学领域的革命性发展之一。3D类器官是(实验室生产的)器官的缩小简化版,由细胞团构成。它们是三维的,能够显示逼真的微观解剖结构。类器官应用广泛,可以作为研究疾病的体外工具,也可用于再生医学和精准医疗。 早在2009年,Hans Clevers和Toshiro Sato用来源于小鼠肠道的成体干细胞培育出首...
【年终盘点】2021年类器官领域必看的精华研究内容
类器官属于三维(3D)细胞培养物,包含其代表器官的一些关键特性。此类体外培养系统包括一个自我更新干细胞群,可分化为多个器官器官特异性的细胞类型,与对应的器官拥有类似的空间组织并能够重现对应器官的部分功能,从而提供一个高度生理相关系统。与传统2D细胞培养模式相比,3D培养的类器官包含多种细胞类型,突破了细胞间单纯的物理接触联系,形成了更加紧密的细胞间,细胞与基质间高度相互作用,形成具有功能的“...
【Nature子刊】利用干细胞类器官模型,揭示受COVID-19损伤的肺和肺纤维化中独特的干细胞轨迹
COVID-19等疾病对肺部造成严重损伤,引发异常干细胞修复,从而改变肺部结构。损伤后异常的干细胞分化可阻止正常肺功能的恢复。 UCSF(加州大学旧金山分校)研究人员于近日在《Nature Cell Biology》杂志上发表的一项合作研究中,UCSF研究人员Jaymin Kathiriya博士和Wang Chaoqun博士发现,严重的肺损伤可以触发肺干细胞发生异常分化。Drs....
【研究】在实验室中首次培育的蝙蝠类器官——探索蝙蝠为什么能够与病毒一起生活而自身却不生病?
试图解释为什么蝙蝠一次可以感染许多病毒而不会死于COVID-19等疾病的实验——这些知识可以帮助我们减少传染病对人类的威胁——直到现在,人们一直在努力,因为活的野生蝙蝠不是很好的研究对象。为了克服这一障碍,研究人员首次培育出了果蝠属蝙蝠的“类器官”,它可以在体外繁殖肠道。 一篇描述蝙蝠类器官生长技术的论文发表在《International Journal of Molecular...
【Cell子刊】科学家们如何培育出了迄今为止最复杂的胃类器官?有望为其它类器官开辟新的道路
类器官(Organoid)是科学家们应用体外三维培养技术建立的结构和功能上类似于机体器官的小型组织,其具有组织自我更新及可长期培养的特点,在一定程度上能模拟体内器官生理活动和病理变化,能够成为精准医疗、器官移植等研究领域的理想体外载体。 在再生医学迈出的重要一步中,辛辛那提儿童医院的科学家报告说,他们成功地开发了一种非常复杂的胃类器官,它具有独特的腺体和神经细胞,可...
【Cell子刊】类器官培育的香饽饽——利用获诺贝尔奖的诱导多能干细胞iPSC培育出了一种特殊的心脏类器官
类器官属于三维(3D)细胞培养物,包含其代表器官的一些关键特性。此类体外培养系统包括一个自我更新干细胞群,可分化为多个器官器官特异性的细胞类型,与对应的器官拥有类似的空间组织并能够重现对应器官的部分功能,从而提供一个高度生理相关系统。 iPSC诱导性多能干细胞,全称induced pluripotent stem cells,它们在形态、基因和蛋白表达、表观遗传修饰...
腾讯登录