推荐活动

如何让癌症治疗更有效?小分子大分子强强联手更有效

首页 » 研究 » 新药研发 2016-05-24 转化医学网 赞(5)
分享: 
导读
小分子是通过化学合成的,可以很轻易地进入细胞内部达到目标靶点,缺点是并不能与所有的靶点结合;生物制剂,尤其是单克隆抗体等大分子,只要目标是在细胞的表面,一般可靶向到任何目标,因此很受欢迎,缺点是不易透过,且多数情况下需要注射。因此,将“小分子”安插在“大分子”的翅膀上形成的抗体-药物偶联剂(ADCs)弥补了二者的不足,成为了制药产业下一个争夺的制高点。

  近百年来,基于抗体的免疫疗法与基于化学药物的化学疗法,一直是临床上癌症治疗的两大治疗策略。传统小分子药物指针对大众常见病的口服药物,这曾经是支撑制药工业的主打产品。但过去20年抗体药物的出现开始挑战小分子药物的生存空间。抗体药物选择性好,脱靶副作用少见,专利保护方面大分子药物也有优势除了物质专利外还有工艺、纯化的多层专利保护优势,因此临床开发成功率高于小分子药物,成了制药工业新时代的“弄潮儿”。小分子药物如波立维专利过期一个季度即可令其销售下降90%,而大分子药物缓冲期要长的多。另一方面生物仿制药的市场渗透要慢得多。仿制药无法保证与原研药完全一致,而且生物仿制药的价格优势并不明显。当然不是所有靶点都适合生物大分子,生物药也有特有的劣势如需要注射。所以生物大分子不可能完全取代小分子药物。

  无论是小分子还是生物制剂(大分子),其在药物开发中的限制是重大的。现已发现的小分子和生物制剂在结构上的吻合度仅20%左右,远不及很多疾病治疗的靶标要求。不过我们也需要正视:小分子是通过化学合成的,可以很轻易地进入细胞内部达到目标靶点,缺点是并不能与所有的靶点结合;生物制剂,尤其是单克隆抗体等大分子,只要目标是在细胞的表面,一般可靶向到任何目标,因此很受欢迎,缺点是不易透过,且多数情况下需要注射。在临床实践中,治疗性抗体虽然靶向性强,但是由于其分子量大对于实体瘤的治疗效果有限。小分子的化学药物虽然具备对癌细胞的高度杀伤效力,却也常常误伤正常细胞,引起严重的副作用。

  因此,在癌症治疗的临床实践上,常常互补的使用“化学疗法”和“免疫疗法”。临床上的需求为制药界研发抗癌药物提出了新的挑战。能否直接将“小分子”安插在“大分子”的翅膀上构建“抗体-化学药物偶联剂(ADCs)”,利用抗体对靶细胞的特异性结合能力,输送高细胞毒性化学药物,以此来实现对癌变细胞的有效杀伤。在这种药物设计的构想中,抗体成为定点输送化学药物的“生物导弹”,化学药物则是“生物导弹”具有杀伤效力的“战斗部”。如果ADCs药物的成功面世,它将能协同发挥抗体药物和化学药物各自的优点,成为了制药产业下一个争夺的制高点。

1 抗体药物偶联

  近几年,全球已掀起抗体药物偶联物(ADC)研发的热潮。ADC药物由单克隆抗体和强效毒性药物(toxic drug)通过生物活性连接器(linker)偶联而成,是一种定点靶向癌细胞的强效抗癌药物。ADC类药物被认为能够更加高效和有效的治疗疾病,在未来将成为治疗疾病的重要手段。ADCs药物的开发涉及:药物靶点的筛选,重组抗体的制备、“连接物”技术开发以及高细胞毒性化合物的优化等四个方面,上述四个方面任一个环节出现问题,都会影响到ADCs药物的安全性和有效性。

  ADCs药物的靶点ADCs药物靶点选择的原则是,应为肿瘤细胞特异性表达,或过度表达的抗原。这样方能确保ADCs药物在机体内的靶向性。目前在研的ADC药物靶点几乎涵盖了所有已经确证的药物靶点,除了已有上市抗体药物靶点,如Her 2EGFRCD19CD22CD70等,诸多新型靶点如:SLC44A4 AGS-5)、Mesothelin 等也成为ADCs药物的作用靶点。

  ADCs药物使用的抗体:抗体在ADCs药物的作用在于精确“制导”,高细胞毒性的化学药物连接抗体后,可精确锁定靶细胞。抗体的优化也可大幅降低ADCs药物的非特异性结合,延长ADCs药物在血液中的半衰期。

  ADCs药物的连接物:连接物实现抗体与化学药物的连接,在ADCs药物进入靶细胞前,它能确保偶联药物的完整性。而一旦ADCs药物进入作用靶点,连接物又要确保化学药物的有效释放。所以,ADCs药物连接物的解离与否,直接影响到其药代动力学。ADCs药物开发的关键在于连接物的构建。ADCs药物在进入靶细胞前,要保证抗体与化学药物的完整结合。而接近或进入靶细胞后,化学药物又要准确释放。此过程取决于连接物的“稳定性”。此外,ADCs药物中抗体负载的化学药物数量也取决于连接物。早期的ADCs药物的研发失败,多是由于连接物技术的落后,后者直接影响了ADCs药物的安全性和有效性。目前,ADCs药物中所使用化学共价键(二硫键、肽键、硫醚键等)来实现抗体与化学药物连接的连接。这些连接物根据其解离特性,可分为“可降解类”和“非降解类”。可降解连接物可在不同pH或胞内酶的作用下降解,实现化学药物与抗体分离。AdcetrisTM使用的便是此类连接物,由于化学药物释放后可能会从靶细胞逃逸,因此该药也具有杀伤靶细胞临近组织的功效。非降解连接物在整个药物作用过程中,始终保持抗体与化学药物的偶连完整性。KadcylaTM使用的便是此类非降解连接物,所以,该药进入靶细胞后最终会降解为氨基酸、抗体、化学药物等组分的混合物。

  ADCs使用的化学药物:目前ADC使用的化学药物主要有三种,微管蛋白抑制剂(美登霉素)、烷化剂、和DNA小沟抑制剂(烯二炔类抗生素)。这些化学药物与传统的化疗药物相比,对癌细胞具备更强的杀伤效力。通常平均四到六个分子的剂量就可实现对靶细胞杀伤。此外,ADCs药物偶联的小分子化学药物,进入人体后应不具有免疫原性。

  目前,ADCs药物开发的核心技术掌握在少数国外公司手中。如:美国的Seattle Genetics公司和Immunogen公司。两公司所开发的ADC药物所偶联的化学药物有所不同:Genetics公司在研的ADCs药物多使用微管蛋白聚合酶抑制剂MMAEMMAF等;而Immunogen公司在研的ADCs药物多使用微管蛋白解聚剂美登素DM1DM4等。由于ADCs药物研发线不断充实,近年不断有新产品陆续上市,国际制药界对于ADCs药物的开发热情持续高涨。众多制药巨头不惜斥巨资从上述公司引进技术。近年,辉瑞、雅培从Seattle Genetics公司,礼来、诺华从ImmunoGen公司,默克从Ambrx公司分别引进ADCs药物开发技术。

  2000年,第一个ADCs药物MylotargTMFDA批准上市,用于治疗急性髓系白血病。根据全球知名市场调研公司Research & Markets发布的一份新报告,未来10年,预计将有7-10ADC新药上市,2024ADC市场将达到100亿美元,ADC市场将经历飞速发展。随着数个ADC药物的预期上市,ADC市场中的投资预计将进一步增加。ADC市场未来增长机会十分可喜。

(转化医学网360zhyx.com)本文是转化医学网原创内容,转载请点击获取授权

评论:
评 论
共有 0 条评论

    还没有人评论,赶快抢个沙发

相关阅读